An Outcome Evaluation of Sphincter Pharyngoplasty for the Management of Velopharyngeal Insufficiency

Albert Losken, M.D., J. Kerwin Williams, M.D., Fernando D. Burstein, M.D., Deonne Malick, B.S., and John E. Riski, Ph.D.

Atlanta, Ga.

Sphincter pharyngoplasty is frequently used for the management of children with velopharyngeal insufficiency. The purpose of this study was to evaluate outcome and revision rates of sphincter pharyngoplasty at the authors' institution. Two hundred fifty patients underwent sphincter pharyngoplasty for velopharyngeal insufficiency between January of 1987 and March of 2001. There were 117 female patients and 135 male patients, with a mean age at primary sphincter pharyngoplasty of 7.6 years (range, 1 to 45 years). Diagnoses included velopharyngeal insufficiency alone (n = 63), velopharyngeal insufficiency associated with cleft palate (n = 127), velocardiofacial syndrome (n = 92), submucous cleft (n = 15), and other (n = 13). Pharyngoplasty revision was defined as any secondary surgical revision of the sphincter as determined by clinical evaluation and objective speech assessment. The pharyngoplasty revision rate was found to be 12.8 percent (n = 32). A favorable outcome was demonstrated in 30 of these patients (93.8 percent) after pharyngoplasty revision. Two patients, one with a diagnosis of a submucous cleft and velocardiofacial syndrome and the other with a cleft palate, required a second revision because of persistent velopharyngeal insufficiency. The revision rate was highest in those patients with velocardiofacial syndrome (21.8 percent) and lowest in patients with velopharyngeal insufficiency alone (6.8 percent). Patients who required revision had significantly higher preoperative oral sentence nasometry (55.2 percent versus 46.1 percent; p < 0.01) and larger velopharyngeal areas (23.7 mm² versus 18.9 mm²). There was no significant difference in age or sex for those patients who required a revision compared with those who did not require revision. Mean follow-up was 2.4 years (range, 4 months to 13.6 years). Sphincter pharyngoplasty is an effective procedure for the treatment of velopharyngeal insufficiency using revision rate as the standard of success. It had an 87 percent primary success rate that increased to 99 percent after a single revision. Patients with velocardiofacial syndrome, more severe preoperative hypernasal resonance, and larger velopharyngeal areas were more likely to require pharyngoplasty revision. (Plast. Reconstr. Surg. 112: 1755, 2003.)

Velopharyngeal insufficiency results from a structural or functional defect at the level of the nasopharynx in which there is an inability to accomplish adequate velopharyngeal closure. Surgical management of velopharyngeal insufficiency has undergone many modifications since first introduced by Passavant in 1862. The rationale behind any surgical intervention is to diminish airflow through the nose during speech by reducing the area of the nasopharynx.

Sphincter pharyngoplasty is usually performed for the correction of velopharyngeal insufficiency. The procedure results in a soft-tissue “diaphragm,” narrowing the nasopharynx and enabling velopharyngeal closure. The sphincter pharyngoplasty is easily modified, which enhances the success rate of this procedure. A successful outcome is often determined by perceptual analysis and quantified by a detailed objective instrumental evaluation. However, it is also important to evaluate the incidence of surgical revision, as this reflects success of the surgical technique, patient selection, and flexibility of the surgical procedure. The purpose of this review was to examine the revision rates for sphincter pharyngoplasty in

From the Division of Plastic Surgery, Emory University, and Center for Craniofacial Disorders, Children’s Healthcare of Atlanta at Scottish Rite. Received for publication August 20, 2002; revised February 25, 2003.

DOI: 10.1097/01.PRS.0000096720.33554.8B

1755
the treatment of children with velopharyngeal insufficiency. Clinical variables and speech data were analyzed to determine risk factors that may increase the likelihood of failure and subsequent revision.

PATIENTS AND METHODS

Demographics

The records of all patients who underwent sphincter pharyngoplasty for velopharyngeal insufficiency between January of 1987 and March of 2001 were reviewed. All patients were evaluated by a multidisciplinary team that included speech pathologists, audiologists, geneticists, nutritionists, dental specialists, and craniofacial surgeons. Craniofacial clinic databases, medical charts, and office notes were used for review. Each patient was characterized with regard to diagnosis, preoperative assessment, surgical intervention, postoperative care, speech analyses, secondary procedures (and their revision), and outcome.

Two hundred fifty consecutive patients underwent sphincter pharyngoplasty for velopharyngeal insufficiency and were included in this review. There were 117 female patients and 133 male patients, with a mean age at primary sphincter pharyngoplasty of 7.6 years (range, 1 to 45 years). The underlying diagnoses based on category were velopharyngeal insufficiency alone (n = 63), velopharyngeal insufficiency associated with cleft palate (n = 127), velocardiofacial syndrome (n = 32), submucous cleft (n = 15), and other (n = 13). Forty percent of the patients with velopharyngeal insufficiency alone (n = 25) had undergone previous documented tonsillectomy and adenoidectomy. Mean follow-up was 2.4 years (range, 4 months to 13.6 years).

Analysis of Velopharyngeal Function

All patients underwent screening of velopharyngeal function that included perceptual speech evaluation, clinical screening of velopharyngeal closure, and oral examination. The perceptual ratings of speech were determined during live speech samples, which included single words, sentences, and conversational speech. For this investigation, resonance was categorized as (1) hypernasal, (2) hyponasal, (3) mixed, or (3) normal. Screening for velopharyngeal closure was performed with devices sensitive to nasal airflow. Patients determined to have hypernasal or hyponasal resonance, or nasal air escape, were evaluated further using instrumentation and imaging. Imaging studies included lateral phonation radiographs to determine the ratio of nasopharyngeal depth to velar length, the height of attempted velopharyngeal contact relative to the first cervical spine, and any other occult craniofacial signs. Select patients underwent multiview videofluoroscopic and flexible nasendoscopy.

Pressure flow measures were obtained using the Perci-SARS (MicroTronics Corp., Chapel Hill, N.C.) during the repeated production of high-pressure oral consonants in repeated words and/or blowing tasks (for young children not capable of repeating words). Velopharyngeal orifice area (in millimeters squared) was calculated using these measurements. Nasometry was performed using a Kay Elemetrics 6200 Nasmeter (Kay Elemetrics Corp., Lincoln Park, N.J.). Nasalance scores were collected during the production of oral and nasal loaded speech samples. See Table 1 for published normal data.

Nasendoscopy was performed using a Pentax FNL 2.4-mm flexible endoscope. The endoscope was positioned just above the velopharyngeal port and patients were asked to repeat

| TABLE I |
|---|---|---|---|
| **Aerodynamic** | **Prephincter** | **Postphincter** | **Postrevision** | **Normal** |
| Velopharyngeal area, mm² | 23.7 ± 19.5 | 23.7 ± 22 | 4.17 ± 3.88 | <5 mm* |
| Radiography | 0.99 ± 0.25 | N/A | N/A | 0.70 ± 0.88† |
| Depth-to-length ratio | 55.2 ± 17.5 | 40.7 ± 16.8 | 27.1 ± 16.4 | 15.6 ± 5.7 |

high-pressure and low-pressure oral and nasal loaded speech samples in words and connected speech to assess velopharyngeal function. Velar elevation, lateral wall movement, closure patterns, and overall velopharyngeal function during various speech tasks were assessed. Lateral radiographs were used to measure velar length and depth of nasopharynx. These were calculated to determine the ratio of nasopharyngeal depth to velar length. A depth/length ratio greater than 0.80 was termed "unfavorable."

Velopharyngeal insufficiency was defined by (1) a perceptual rating of hypernasal or hyponasality, (2) an observed velopharyngeal gap during an oral loaded speech task via nasendoscopy, (3) a nasalance score greater than 30 percent for an oral loaded speech sample determined by nasometry measurements, and/or (4) a velopharyngeal orifice area greater than 5 mm² during pressure-flow studies.

Surgical Procedure

Pharyngoplasty revision was defined as any secondary surgical modification of the sphincter pharyngoplasty. The need for revision was determined by clinical examination, perceptual speech evaluation, and objective instrumental assessment.

Sphincter pharyngoplasty was performed in patients with velopharyngeal insufficiency associated with limited lateral wall movements and/or large velopharyngeal gaps. Bilateral superficially based palatopharyngeus myomucosal flaps were elevated off the posterior aspects of the posterior tonsillar pillars. These flaps were based caudally to the level of the proposed height of the velum using the first cervical vertebrae as the landmark. A transverse incision was then made through the posterior constrictor at this level. The left and right flaps were then attached to the superior and inferior mucosa of the posterior pharyngeal incision, respectively. The newly created sphincter was secured by suturing the lateral flaps to one another with a degree of overlap subjectively determined by results of the preoperative testing, and the donor sites were closed. A nasal trumpet was placed across the sphincter for airway control and removed on postoperative day 1. The children were kept on a soft diet until their first postoperative visit at 3 weeks.

Revision of the sphincter was performed easily by either readvancing or partially removing the original flaps, based on the diagnosis. A simple wedge incision in the posterior pharyngeal wall was performed at the level of the sphincter for those patients with limited hypernasality or hyponasality.

Statistical Analysis

Crude statistical analysis for revision rates stratified by diagnosis was carried out using a 5 x 2 contingency chi-square test with $p < 0.05$. Prepharyngoplasty and postpharyngoplasty speech data were analyzed using t testing, with significance at $p < 0.05$ for comparisons between those patients who required revision and those who did not require a revision. A multivariate logistic regression model was performed using the maximum likelihood estimation method to identify potential risk factors such as age, sex, and diagnosis (independent variables) for patients who required revision (dependent variable). Nasalance, pressure flow, and velopharyngeal dimensions (determined by cephalometric analysis) were also compared for the two groups. The sample was stratified by clinical diagnosis and comparisons were made. For additional statistical analysis, the cohort was then divided into patients with a cleft palate and those patients without a cleft palate.

Results

Outcome

Success of the primary sphincter pharyngoplasty, defined as improvement by perceptual speech evaluation and analysis foregoing the need for a surgical revision, was demonstrated in 87 percent of patients (218 of 250). A successful outcome was seen in 99 percent (248 of 250) after a single pharyngoplasty revision. The pharyngoplasty required revision in 32 patients (12.8 percent). Twenty-five patients in this group (78 percent) showed evidence of persistent velopharyngeal insufficiency and required a tightening procedure or elevation of the sphincter in the nasopharynx. Seven patients (22 percent) with hyponasal speech, symptoms of nasal airway obstruction, and compromise of the nasopharyngeal opening on endoscopy required expansion of the sphincter. The average time interval to revision was 10.4 months (range, 8 to 36 months). After the initial revision, improvement in velopharyngeal competence was documented in 50 of 32 patients (94 percent). Two patients with a diagnosis of a submucous cleft and velocardio-
facial syndrome with a cleft palate required a
tertiary pharyngoplasty because of persistent
velopharyngeal insufficiency.

No statistically significant difference was
seen in the average age at initial sphincter
pharyngoplasty in patients who required a
revision (6.8 ± 4.48 years) compared with those
who did not require revision (7.4 ± 4.4 years).
Sex did not appear to have any significant ef-
effect on revision rates either (Table II). Multi-
ivariate analysis confirmed that age at the time
of the operation and sex were not significantly
associated with the need for a revision.

Diagnosis

The initial diagnosis appeared to affect the
revision rate; however, no significant differ-
ences were found (Table III). The revision rate
was highest in those patients with velocardio-
facial syndrome (21.9 percent) and lowest in
patients with velopharyngeal insufficiency
alone (6.3 percent). When further stratified by
cleft palate versus no cleft palate, patients with
a cleft palate had a slightly higher revision rate
(15 percent) than those patients without a cleft
palate (10 percent); however, the difference
was not significant (Table IV).

Speech Analysis

Preoperative nasometry scores were signi-
ficantly higher in those patients who eventually
required a pharyngoplasty revision (55.2 percent
versus 46.1 percent), with a value of \(p = 0.01 \)
(Table V). No significant differences in the pre-
operative pressure flow measurements or radi-
ographic measurements for the two groups were
found. However, the patients who required revi-
sion of the pharyngoplasty were more likely to
have larger velopharyngeal areas (23.7 mm² ver-
sus 18.9 mm²). As expected, postpharyngoplasty
measurements (nasalance, velopharyngeal area,
and oral pressure) were significantly higher in
those patients who did not demonstrate velo-
pharyngeal competence and subsequently required
pharyngoplasty revision.

Longitudinal data are presented in Table I
for those patients who underwent pharyng-

TABLE I

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Age at SP (y)</th>
<th>Revision Rate* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCF syndrome</td>
<td>32</td>
<td>7/32 (21.9)</td>
</tr>
<tr>
<td>Cleft palate</td>
<td>127</td>
<td>19/127 (15)</td>
</tr>
<tr>
<td>Submucous cleft</td>
<td>15</td>
<td>1/15 (6.7)</td>
</tr>
<tr>
<td>VPI without cleft</td>
<td>63</td>
<td>4/63 (6.3)</td>
</tr>
<tr>
<td>Other</td>
<td>15</td>
<td>1/15 (7.7)</td>
</tr>
<tr>
<td>Overall</td>
<td>250</td>
<td>32 (12.8)</td>
</tr>
</tbody>
</table>

SP, sphincter pharyngoplasty; VCF, velocardiofacial; VPI, velopharyngeal
insufficiency.

* Revision rates were not significantly different.

TABLE IV

Reoperation Rate: Cleft Palate versus No Cleft Palate

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>Revision Rate (%)</th>
<th>Indications (hypernasal/ hyponasal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleft palate</td>
<td>134</td>
<td>20/134 (15)</td>
<td>17/3</td>
</tr>
<tr>
<td>No cleft palate</td>
<td>116</td>
<td>12/116 (10)</td>
<td>8/4</td>
</tr>
</tbody>
</table>

plasty revision (\(n = 32 \)). All measurements im-
proved and appeared to approach normal after pharyngoplasty revision.

DISCUSSION

Effective management of children with velo-
pharyngeal insufficiency involves surgical nar-
rowing of the nasopharynx. Passavant de-
scribed the original procedure for managing
velopharyngeal insufficiency as surgical adhe-
sion of the posterior soft palate to the posterior
pharyngeal wall.\(^1\) This was followed closely by
the introduction of posterior pharyngeal flaps
to augment the pharyngeal wall.\(^10\) Numerous
modifications of this technique were engi-
neered over the years, settling with the superi-
orly based flap still popular today.\(^11,12\) The
spinhceter pharyngoplasty, originally described
by Hynes in 1950, was a two-stage procedure
intended as an operation for the failed cleft
palate.\(^13\) It was designed to narrow the naso-
pharyngeal isthmus with lateral pharyngeal
myomucosal flaps sutured across the posterior
pharyngeal wall. After some modification, it
now represents a frequently used method for
correcting velopharyngeal insufficiency after
palatal repair. The observed postoperative
spinctering appears to be passive, caused by
contraction of the superior constrictor pharyn-
geus muscle.\(^14\)

Numerous modifications have been made to
this procedure since originally described, in an
TABLE V
Prepharyngoplasty and Postpharyngoplasty Objective Speech Analysis

<table>
<thead>
<tr>
<th></th>
<th>Prepharyngoplasty*</th>
<th>Postpharyngoplasty*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Success (n = 218)</td>
<td>Failure (n = 32)</td>
</tr>
<tr>
<td>Aerodynamic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velopharyngeal area, mm²</td>
<td>18.9 ± 19.7</td>
<td>23.7 ± 19.5</td>
</tr>
<tr>
<td>Radiograph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth-to-length ratio</td>
<td>0.98 ± 0.26</td>
<td>0.99 ± 0.25</td>
</tr>
<tr>
<td>Nasometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasalance</td>
<td>46.1 ± 14.7</td>
<td>55.2 ± 17.5</td>
</tr>
</tbody>
</table>

* Success, did not require pharyngoplasty revision; failure, required pharyngoplasty revision.

attempt to improve outcomes. Hynes, in 1967, made observations based on a 20-year experience with pharyngoplasty and suggested elevating as much bulk as possible with the flaps. He reported a 20 percent revision rate for his pharyngoplasty patients. Orticcoera popularized this procedure as a means to treat velopharyngeal insufficiency and was the first to introduce the concept of a dynamic sphincter with the velum anteriorly, pharyngeal walls laterally, and superior constrictor of the posterior pharyngeal wall posteriorly. Orticcoera reported a 62 percent velopharyngeal closure by inspection in his series of 73 patients. Jackson and Silverton's modification included elevating bilateral superiorly based flaps from the posterior tonsillar pillars and incorporating the palatopharyngeus muscles. Further modifications were described in an effort to optimize speech outcome by placing the pharyngoplasty flaps higher at the level of attempted velopharyngeal contact.

Riski et al. later reviewed 139 patients who underwent sphincter pharyngoplasty and showed a 78 percent success rate. They defined success as resolution of hypernasal resonance and normal pressure flow measures. The revision rate in their series was 12 percent (16 of 139 patients), with revision being successful in eight of 16 patients. The primary cause of failure was found to be insertion of the flap below the point of attempted velopharyngeal closure. Witt et al. reviewed 123 patients after sphincter pharyngoplasty and showed a revision rate of 16 percent (20 patients), with 16 patients managed successfully. The primary cause of failure was partial or complete flap dehiscence. They also concluded that the primary pharyngoplasty failure rate (16 percent of 123) was roughly equivalent to the primary pharyngeal flap failure rate (20 percent of 65). Similar smaller series have demonstrated equivalent revision rates, as presented in Table VI.

TABLE VI
Pharyngoplasty Reoperation Rates

<table>
<thead>
<tr>
<th>First Author (year)</th>
<th>Reoperation Rate (sphincter pharyngoplasty) (%)</th>
<th>No. of Patients in the Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witt, 1998</td>
<td>16</td>
<td>123</td>
</tr>
<tr>
<td>Kasten, 1997</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>Sle, 1998</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>Riski, 1992</td>
<td>11.5</td>
<td>130</td>
</tr>
<tr>
<td>Witt, 1995</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>Losken, 2003 (this study)</td>
<td>13</td>
<td>250</td>
</tr>
</tbody>
</table>

Consistent risk factors associated with success or failure of the primary pharyngoplasty have not been found. The only factors in our series that appeared to have an effect on revision rate were the initial diagnosis and preoperative nasometry. Patients with velocardiofacial syndrome and patients with a cleft palate appeared to have a slightly higher incidence of pharyngoplasty failure. Velocardiofacial syndrome has associated anatomical variations, neuromuscular dysfunction, hearing loss, developmental delays, and learning disability that make the management of velopharyngeal insufficiency more challenging. Restoration of velopharyngeal competence was possible in all but one patient with velocardiofacial syndrome after the first pharyngoplasty revision, with no technical difficulties. This is consistent with previous reviews regarding the anatomy of the carotid artery in children with velocardiofacial syndrome, in whom pharyngoplasty or pharyngeal flaps were safely and successfully completed 80 percent of the time. Preoperative workup includes nasoendoscopy and magnetic resonance angiography.

Neither age nor sex of the patient appeared to have any direct association with the need for a pharyngoplasty revision in our series. The
relationship between age at time of initial palate repair and pharyngoplasty success would be interesting to evaluate in cleft palate patients; however, these data were not consistently available, given the high referral nature of our craniofacial clinic. Objective speech data demonstrated that patients with more severe hypernasal resonance disturbances and those with larger velopharyngeal areas were treated less successfully.

"Total" success of surgical treatment for velopharyngeal insufficiency is difficult to determine. Clinical resolution of velopharyngeal insufficiency is often determined by the surgeon or speech pathologist. This assessment is often subjective, and unfortunately, hyponasality is often included in this category. We evaluated outcome on the basis of revision rate, with the goal being improvement in hypernasal resonance and progression toward normal pressure-flow measurements. Although complete resolution of velopharyngeal insufficiency was not evident postoperatively in all individuals, velar competence was restored to the point where "normal" speech was possible with speech therapy. It is difficult to provide ideal outcome measures, especially in speech analysis, which does contain a qualitative or subjective component; however, as we become more critical by objectively analyzing and confirming our results, data such as revision rates may be an important outcome variable when discussing effectiveness of a surgical procedure. With revision rate as the standard of success or indicator of failure, 87 percent of patients with velopharyngeal insufficiency were treated effectively with sphincter pharyngoplasty. This number improved to 99 percent after a single pharyngoplasty revision. The majority of patients underwent revision for persistent hypernasality, and 22 percent required correction of hyponasality/nasal obstruction.

CONCLUSIONS

Sphincter pharyngoplasty is a safe and effective procedure for the management of velopharyngeal insufficiency in children. It remains difficult to predict accurately those patients who might be at increased risk for revision, however, once again stressing the importance of patient selection and surgical technique. Diagnosis and severity of preoperative hypernasal resonance suggest a higher probability of revision and could provide insight into various technique modifications to minimize pharyngoplasty revision.

J. Kerwin Williams, M.D.
Atlanta Plastic Surgery, Suite 500
975 Johnson Ferry Road, N.E.
Atlanta, Ga. 30342
pps@atlplastic.com

REFERENCES

